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Abstract— While visuomotor policy has made advancements
in recent years, contact-rich tasks still remain a challenge.
Robotic manipulation tasks that require continuous contact
demand explicit handling of compliance and force. However,
most visuomotor policies ignore compliance, overlooking the
importance of physical interaction with the real world, often
leading to excessive contact forces or fragile behavior under
uncertainty. Introducing force information into vision-based
imitation learning could help improve awareness of contacts,
but could also require a lot of data to perform well. One
remedy for data scarcity is to generate data in simulation, yet
computationally taxing processes are required to generate data
good enough not to suffer from the Sim2Real gap. In this work,
we introduce a framework for generating force-informed data
in simulation, instantiated by a single human demonstration,
and show how coupling with a compliant policy improves the
performance of a visuomotor policy learned from synthetic
data. We validate our approach on real-robot tasks, including
non-prehensile block flipping and a bi-manual object moving,
where the learned policy exhibits reliable contact maintenance
and adaptation to novel conditions. Project Website: flow-with-
the-force-field.github.io.

I. INTRODUCTION

Contact-rich robotic manipulation tasks demand a delicate
balance between precise motion control and compliant force
regulation. Mechanical compliance is crucial for successful
contact interactions. Visuomotor policies, which are control
policy representations that map raw visual observations to
motor actions, have emerged as the leading robot learn-
ing paradigm for manipulation tasks due to their ease of
specification and multi-modal capabilities. Yet, state-of-the-
art approaches often ignore compliance and focus only on
positional accuracy [1], [2], [3]. Recent advances have high-
lighted that incorporating compliance or force feedback can
drastically improve performance in tasks like object flipping
or wiping, where fixed-stiffness controllers fail to handle
varying contact conditions [4], [5]. Some learn variable
stiffness profiles from human demonstrations via diffusion
models [4], [6], while others use reinforcement learning or
trajectory optimization to tune compliance [7], [8].

While these methods achieve strong performance, they
typically demand substantial human effort. For instance, ACP
[4] requires hundreds of real demonstrations, and RL or
trajectory optimization methods need carefully designed re-
ward functions and extensive data or training. Consequently,
current compliance policies lack scalability due to intensive
physical data collection or intricate reward engineering. In
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Fig. 1. Given a single demonstration in simulation, we generate force and
demonstration-guided data and transfer to real-world compliant visuomotor
policy deployment.

contrast, our pipeline significantly reduces these burdens
by generating force-informed simulation data from a sin-
gle demonstration, potentially automating compliant policy
learning for continuous, contact-rich tasks.

In this work, we address the challenge of learning
vision-force adaptive compliance policies from simulation-
generated data instantiated by a single human demonstra-
tion. The single demonstration is collected in a simulation
environment via teleoperation [9], removing the need for
a real robot setup. In particular, we propose a lightweight,
yet effective, data generation strategy that produces diverse
behaviors from a single demonstration in a simulator via
force-informed trajectory modulation [10], [11], [4], [5] and
Laplacian editing [12], [13], [14]. These synthetic trajectories
are used to train an imitation policy that conditions on 3D
pointcloud observations, similar to [15], [16], end effector
pose, and force measurements. The policy outputs task-
specific passive impedance parameters that can be executed
by a low-level compliance controller on real robots. To learn
this complex and multi-modal sensorimotor mapping, we
leverage the flow-matching approach [17], [18], [3], allowing
high-frequency inference. We introduce using point clouds
and force input for the flow matching policy.

While a policy that outputs good trajectories is impor-
tant, the rollout controller is equally critical for ensuring
robustness and safety in the real world, especially under the
Sim2Real gap. Thus, we encode the policy rollout poses into
a state-velocity field, which, during execution, is coupled
with a Passive Impedance Controller [19] that dampens
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deviations from the desired velocity. Unlike position-based
controllers that rigidly follow waypoints and often generate
abrupt contact forces, this velocity-based approach reduces
energy injection with softer contact, as with state-dependent
dynamical system (DS) policies [20]. Combined visuo-force
as an input and the compliant vector as the output, this
framework reduces the risk of damage due to misalignment
while maintaining good performance.

To summarize, we propose a framework for learning
adaptive compliant vision-based policies from simulation
data, consisting of three major components, including i)
generating force-informed sim data, ii) policy learning with
flow matching, and iii) safe rollout on real hardware with
state-velocity fields. Our contributions are fourfold:

• Propose a lightweight, yet effective, force-informed data
generation strategy in simulation with virtual targets and
Laplacian editing for vision-based imitation learning.

• We design an Adaptive Compliant Flow Matching pol-
icy that uses point cloud and force as inputs and outputs
pose actions and impedance parameters.

• We demonstrate zero-shot transfer of our point cloud-
based policy to real Franka robots on tasks like box
flipping and bimanual grasping, without any real-world
demonstrations or sim2real transfer algorithm.

• We design a scheme for generating a vector field from
policy pose rollouts, enabling passive impedance con-
troller to carry out the compliant policy on real robots
with better performance and lower energy injection.

II. RELATED WORK

A. Learning Force-Informed Policies

Learning policies that integrate visual and force feedback
with adaptive compliance has proven highly effective for
contact-rich manipulation tasks. [4] proposed an Adaptive
Compliance Policy with a diffusion model trained on human
demonstrations, outperforming fixed-stiffness controllers. [5]
introduced DexForce, augmenting kinesthetic demonstrations
with force virtual targets to enhance dexterous task perfor-
mance. FACTR [9] combined force-feedback teleoperation
with curriculum training, encouraging the model to prioritize
joint torque cues rather than solely vision. Our approach
differs by employing point clouds instead of RGB inputs,
enabling better spatial generalization and robustness to light-
ing variations. Moreover, rather than extensive real-world
demonstrations, we generate synthetic, force-aware data in
simulation from a single human demonstration. Reactive
methods such as FoAR [21] and Reactive Diffusion Policy
[22] integrate vision and force feedback to handle contact-
rich tasks, yet still rely heavily on real or teleoperated
data. Related approaches include ForceMimic [23], variable
impedance learning [24], IRL-based methods for impedance
recovery from demonstrations [25], and RL-based compli-
ance approaches like Hybrid Trajectory and Force Learning
(HTFL) [7]. These methods generally require extensive real-
world demonstrations or involve intricate reward engineer-
ing and substantial simulation exploration. In contrast, our

method learns adaptive compliance entirely from lightweight,
simulation-generated data, eliminating the need for real-
world demonstrations or expensive trial-and-error rollouts.

B. Data Generation for Sim2Real

Simulation-based data generation has become critical in
reducing the costs and efforts associated with real-world
demonstration collection. [26] introduced PhysicsGen, which
generates large-scale datasets via trajectory optimization
in simulation from limited human demonstrations, en-
abling zero-shot sim-to-real deployment. Similarly, [27] uses
example-guided RL in simulation and distills policies for
whole-body manipulation using state-based inputs and large
amounts of simulated interaction. These systems require
either carefully tuned optimization or RL parameters, and
do not use rich input like point clouds and force. In contrast,
our work introduces a direct trajectory warping technique
for generating force-informed data for sim2real compliant
policy with flow matching [28], [16] on point cloud and force
inputs. Our lightweight method can provide more control
over how to shape the trajectory for generating the data. In
a same spirit as our approach, DemoGen [29] registers a
single human demonstration with TAMP, synthesizing novel
demonstrations by rearranging object configurations and
adapting action trajectories via planning methods, enhancing
spatial generalization. Nevertheless, DemoGen focuses on
pick-and-place, object rearrangement tasks, not compliant
continuous-contact driven tasks. Other methods also include
force or contact cues in simulation, but each has limitations
that our method addresses. Approaches such as FORGE [30],
incorporate force information and domain randomization to
train RL policies for generating data and transfer to the
real world. DyWA[31], with joint impedance in the action
space, also uses RL to train the teacher policy. However, as
mentioned before, RL techniques require extra training and
configuration, while our method can be directly applied to a
human-instantiated demonstration. Frameworks such as [32]
also leverage pointcloud observations and contact reward
for sim2real dexterous manipulation, but do not explicitly
handle continuous contact regulation or adaptive compliance
throughout a task.

In contrast to all aforementioned methods, our framework
is the first to show that one can generate force-informed data
with a lightweight trajectory modification approach, such as
Laplacian Editing [12] and DS force modulation [10], from a
single demonstration in simulation. Such data allows training
flow-matching policies on point cloud and force inputs, and
thus produces compliant policies that transfer zero-shot to
real hardware in contact-rich manipulation tasks.

III. APPROACH

We assume a simulation environment (IsaacGym) is in-
stantiated for each target task, following similar data gen-
eration or sim2real setups [26], [27], [33], enabling privi-
leged access to information such as object pose and con-
tact forces. The formulation of our framework starts from
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Fig. 2. Flow with the Force Field 3D Compliant Visuomotor Policy Learning Framework: Starting from a single simulation demonstration, we augment
data by adding force-informed virtual targets and applying Laplacian editing to generate point-cloud and force trajectories beyond the original demo. We
train a flow-matching policy that takes point cloud and force as input and predicts actions, including an impedance parameter. At rollout, the policy is
synthesized into a state-velocity field and executed with a Passive Impedance Controller for compliant behavior. While our data is only generated with one
simple box geometry for both tasks, the trained policies produce generalizable capabilities beyond the single shapes using our framework.

a single example of human demonstration in simulation
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r, xobj) are composed of robot end-effector pose
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ee ∈ R3 × SO(3) and end-effector force measurements

F r ∈ R3, as well as object pose xobj ∈ R3 × SO(3). We
define action a(i) as the next end effector pose. We use the
privileged information in simulation to help with generating
new data. As will be described in Section III-A, Dh is then
modified with Laplacian editing and force modulation under
domain randomization, which we group the operation as
M(Dh). This operation generates a more diverse and varied
simulation dataset of the task Dsim =

{(
o
(i)
s , a(i)

)}n

i=1
.

Note that the o
(i)
s in Dsim is different from the o

(i)
h in

Dh. The human demonstration in simulation Dh does not
collect point cloud information, while Dsim does. Dsim is
used for training the visuomotor compliant flow matching
policy π : O → A. The observation space for the policy
is O = (opc, oee, of ) and the action space for the policy is
A = (aee, d), corresponding to the target end-effector pose
and compliance gain d. During policy rollout on hardware,
to improve safety, robustness, and passivity, especially under
sim-to-real discrepancies, we convert the policy output pose
A = (aee, d) into a state velocity field ẋd = f(oee, d).
The state velocity field is then fed into a passive impedance
controller to produce the desired task space force, which
drives the robot, denoted as Fee,d = D(x)ẋd, which damps
the deviations from the desired velocity, smoothing motion
and suppressing abrupt force spikes; described in Section
III-C. Figure 2 shows a complete view of our pipeline.

A. Generating Force-Informed Data from Simulation

We provide a light-weight data generation method for
force-sensitive tasks without doing any training but directly
warping a single human demonstration under new initial
conditions in simulation. As shown in Figure 2, We first

(a) Original reference (b) Force-informed

(c) Laplacian editing (d) Force-Laplacian

Fig. 3. Example of trajectory warping with different modulation strategies.
(a) is the demonstration trajectory, (b) shows the force-informed trajectory
with virtual target, and (c) shows the trajectory warped by object and end
effector initial pose, while (d) shows the complete trajectory we use in data
generation warped both by object and end effector initial pose and force.

use FACTR [9] with force feedback to teleoperate a Franka
in IsaacGym and collect a human demonstration. We then
split Dh into free-space and in-contact segments (Fig. 3):
Df (length Tf ) where ∥F r∥ = 0, and Dc (length Tc) where
∥F r∥ > 0. Prior to warping the demonstration trajectory,
we apply domain randomization to the object’s pose, mass
and friction in simulation, yielding new initial conditions
xr
ee(0) and xr

obj(0) that differ from those in Dh. Our goal
is to generate a new demonstration consistent with these
randomized conditions by decomposing and warping Dh.

Free-space trajectory: We warp the transition segment
of the end-effector trajectory Xrf

ee in Df using Laplacian
Editing (LE). LE allows directly modifying an existing
trajectory defined by m constrain waypoints r ∈ Rd×m while
capturing local properties. Let the free-space positions be
pee(t), t = 0, . . . , Tf . We anchor only two short bands: the



first ncs samples at the start and the last nce samples at the
end (ncs + nce = m). The constraint simply preserves the
relative offsets of these samples to the new anchors: pnewee at
the start and pnewobj at the end:

prfee,mod(t) = pnew
ee +

(
pee(t)− pee(0)

)
, t = 0:ncs − 1,

prfee,mod(t) = pnew
obj +

(
pee(t)− pee(Tf )

)
, t = Tf − nce:Tf .

(1)

That is, the first few points keep the same displacement from
the new initial end-effector position, and the last few points
keep the same displacement from the new object position.
Then we first convert the constraint waypoints r in Cartesian
space into Laplacian coordinates ∆ with the graph Laplacian
matrix L ∈ Rm×m[12],

Lij =


1, i = j,

− wij∑
j∈Ni

wij
, j ∈ Ni,

0, otherwise.

(2)

where Ni are a set of neighbor points rj for waypoint ri, and
wij is a weight set to 1 for this work. One can obtain ∆ =
Lr, where ∆ is a concatenation of the Laplacian coordinate
for each waypoint

δi =
∑
j∈Ni

wij∑
j∈Ni

wij

(
ri − rj

)
. (3)

The matrix L can be singular, so one can impose constraints
on the system Lr = ∆ when solving for new waypoints r
to achieve editing [12]. To warp the rotational components
of the free-space trajectory, we apply SLERP (Spherical
Linear Interpolation of Rotations) between qnewee and qnewobj ,
interpolating the rotation part to the same length of Tf

which yields a smooth rotational transition over the entire
free-space segment. Combining these orientations with the
warped positions gives the complete modulated trajectory
Xrf

eemod
∈ R3 × SO(3). As illustrated in Fig. 3(a)–(c),

the object-pose modulation stretches the free-space path and
smoothly reorients it in accordance with the object’s pose.

In-contact trajectory: For the in-contact part, we main-
tain an object-centric frame for trajectory warping. Let
Xrc

ee,X
c
obj denote the in-contact end-effector and object pose

trajectory in the demonstration, and xnew
obj = [pnewobj , qnewobj ]

the randomized initial object pose in simulation. For ev-
ery data point, the warped end-effector pose Xrc

eew(i) =
[Prc

eew(i),Q
rc
eew(i)] and force F r

warp(i) are given by:

Prc
eew(i) = pnewobj +Qc

obj(i)
−1

(Prc
ee(i)−Pc

obj(i)), (4)

Qrc
eew(i) = qnewobj Qc

obj(i)
−1

Qrc
ee(i), (5)

F r
warp(i) = qnewobj (i)Qc

obj(i)
−1 F r(i), (6)

where Pc
obj and Qc

obj are the positions and quaternions from
the in-contact part object trajectory Xc

obj . Equation (4)(5)
preserves the relative end-effector pose in the object frame
while Equation (6) rotates the demonstrated force into the
randomized object frame. Inspired by [10], [11], which use
an end effector velocity orthogonal to the contact surface
to do force modulation, and [4], [5], which steer toward a
virtual target in the measured force direction, we construct

a force-informed virtual target xv
ee for each data point xrc

eew
in Xrc

eew as:
xv
ee = xrc

eew + kfF
r (7)

where kf is a hand-tuned parameter controlling the mod-
ulation strength. We claim that without the force-informed
virtual target tracking, the task is not able to succeed because
it has no intention of maintaining continuous contact. An
analogy for the virtual target is a target pose inside the
object. Moving to that target will generate force on the object
surface. Comparing Figure 14(a) and 14(b), we could see
that the force-informed trajectory gets into the object surface
after adding the virtual target. In our method, the compliance
scheduling term d is supervised by force feedback: during
policy learning, the contact force measured in simulation is
converted to a damping target through a fixed linear mapping,
and the flow-matching policy is trained to predict d to match
this target, which will be introduced in Section III-C.

B. Compliant 3D Visuomotor Flow Matching Policy

To learn visuomotor policies from simulation-generated
data, we use a flow matching framework [17], [16], [18] as
our core method. Flow matching runs at a higher frequency
than diffusion-based models, making it suitable for contact-
rich tasks. Prior work has shown that pointcloud inputs
significantly enhance data efficiency and spatial generaliza-
tion [15], [29]. Accordingly, we adopt a single-view point
cloud as input, eliminating reliance on privileged object
pose information. Thus, our observation space is defined as
O = (opc, oee, of ).

We use DP3 Encoder from [15] to encode the point cloud
opc. We also follow the same practice for processing the data,
including furthest point sampling to 1024 points as well as
cropping for the workspace. To be more contact-aware, we
also include force of as part of the observation, which we
use a simple 3-layer MLP to output a 64-D feature vector.
The input also includes a feature vector encoded by a 3-layer
MLP for the robot pose oee. We then concatenate the three
feature vectors as the observation condition.

The flow matching backbone in Fig. 2, a conditional
U-Net same as [15], but with a different output space.
In order to achieve compliant motion with contact in the
environment, we augment the flow matching action space
with a virtual pose trajectory Xt...t+H

vt and an impedance
parameter trajectory dt...t+H . Therefore, the policy output is
A = (Xt...t+H

ref , Xt...t+H
vt , dt...t+H), which are the robot end

effector reference pose trajectory Xt...t+H
ref , virtual pose tra-

jectory Xt...t+H
vt , as well as impedance parameter trajectory

dt...t+H . We use H = 16 as the policy output horizon in this
work. We will describe the reference pose, virtual pose, and
the impedance parameter in detail in Section III-C. Next, we
formally define the flow matching component.

The goal of conditional flow matching is to estimate a
vector field vθ : Rd × [0, 1] → Rd, such that integrating the
Ordinary Differential Equation (ODE)

dzt
dt

= vθ (zt, t) , (8)



on time t ∈ [0, 1] transports z0 from base distribution p0 to
the target distribution z1 from p1. The base distribution p0 is
typically chosen as Gaussian noise N (0, I). To learn such a
flow, training proceeds by matching vθ along an interpolation
path zt = tz1 + (1− t)z0. By taking the derivative, one will
obtain the direction of a linear path u = z1 − z0, which is
the target velocity. We parametrize the vθ with a conditional
U-Net and matching the u and vθ by solving the following
regression problem [16],

min
v

Ez0∼p0,z1∼p1

[∫ 1

0

∥u (z1, z0)− vθ (zt, t)∥22 dt

]
. (9)

In this work, the target sample z1 is the action in trajectory
data Dsim generated from the simulation. During inference,
we first initiate a noisy action sample A0 from p0. Then the
ODE is integrated with Euler from t = 0 to t = 1 conditioned
on the observation O includes pointcloud opc, end-effector
pose oee, and end-effector force of ,

At+δ = At + δvθ(At,O), (10)

which we set the δ = 0.1 for all of our ex-
periments. After obtaining the actions rollout A =
(Xt...t+H

ref , Xt...t+H
vt , dt...t+H), rather than tracking this tra-

jectory with classical position-based impedance controller
as commonly done in prior works, we introduce a different
compliant rollout technique in the next section.

C. Compliant Policy Rollout with State Vector Field

After obtaining the policy rollout, we execute the resulting
trajectory using a passive impedance controller in task space
[19]. This controller ensures passive interaction with the en-
vironment, which is crucial when contact leads to constraints
or sticking. Although the impedance parameter has been
referenced as part of the policy action, we now formalize
it. We begin with the control law from [19]:

Fc = Gx(x)−D(x)(ẋ− f(x)), (11)

where Gx(x) is the gravity compensation term (omitted from
now on), D(x) ∈ Rd×d is the damping matrix, ẋ ∈ Rd

is the current end-effector velocity, and f(x) = ẋd is
the desired velocity from the policy. The damping matrix
D(x) is structured via an eigendecomposition: D(x) =
V (x)ΛV (x)⊤, where Λ is a diagonal matrix of damping
gains and V (x) = [v1, v2, v3] is an orthonormal matrix of
eigenvectors, with v1 aligned with the desired direction f(x).

While damping-only impedance has the advantage of pas-
sivity, reducing damping sacrifices trajectory tracking, poten-
tially causing distribution shifts. Moreover, tuning directional
damping gains often requires significant manual effort and
may degrade performance. To avoid these, we fix the damp-
ing magnitude and instead modulate the desired velocity
direction to shape compliance. Unlike the flow matching
vector field, this vector field is in the end effector task space
during the execution stage. Specifically, we consider only the
desired velocity component from Equation 11:

Fd = D(x)f(x). (12)

where f(x) is collinear with v1, which we can simplify to
Fd = v1f(x). We then decompose the desired velocity into
magnitude and direction: f(x) = kû, where k = 0.1 is the
desired velocity magnitude, which can be adjusted online or
designed, and û ∈ Rd is the direction vector, which is your
current desired moving direction.

Let xcurr ∈ RN be the robot’s current end effector
position, the rollout reference trajectory from flow matching
be Xt...t+H

ref , and the virtual target trajectory be Xt...t+H
vt .

Each reference Xt
ref has one corresponding virtual target

Xt
vt, which Xt

vt − Xt
ref provides the compliant direction

at Xt
ref . Therefore, we now define t̂ = Xt+1

ref − Xt
ref

and the compliant direction n̂ = Xt
vt − xcurr. In ideal

case, xcurr ≈ Xt
ref . We construct û to blend between the

reference motion direction t̂ and compliant direction n̂:

û =
dn̂+ t̂

||dn̂+ t̂||
, (13)

where d ∈ R>0 is a gain controlling convergence toward the
virtual target and the degree of compliance. This gain is the
impedance parameter of our flow-matching policy. During
training, the gain d is scheduled based on the estimated
force magnitude |F| collected by the force sensor in the
simulation. Similar to the stiffness in [4]. We define it as:

d =


d↑, |F| < F↓
d↑ − (d↑ − d↓)

|F|−F↓
F↑−F↓ , F↓ ≤ |F| ≤ F↑

d↓, |F| > F↑
(14)

where ↑ and ↓ are hardware-specific maximum and minimum
values. This formulation enables directional compliance to
emerge naturally from modulating f(x), without sacrificing
tracking fidelity. While this formulation might break passiv-
ity with such usage, we argue that this state-dependent vector
field rollout will allow safer interruption during execution
when interacting with the environment. Furthermore, we will
show in the experiments that this formulation actually offers
better performance in the real world contact tasks while at
the same time injecting less energy.

IV. EXPERIMENT

Our experiments aim to answer the following questions:
• What data can our force-informed data generation

scheme offer for learning visuo-force policies?
• How well can the policy adapt to the real world with

generated data (in terms of spatial and object general-
ization and matching the desired profile)?

• How does the passive impedance controller perform
compared to the classical impedance controller for
rolling out the adaptive compliant visuo-force policy?

We evaluate our pipeline on two real-world tasks: Block
Flipping and Bi-manual Moving. In Block Flipping, a
single arm pivots a block from flat to upright (≈ 85◦)
and must keep it stable. In Bi-manual Moving, two arms
cooperatively place a large object onto a goal platform; a
trial succeeds when the object is stably stacked. Up to three
self-recoveries are allowed per trial.



TABLE I
DOMAIN RANDOMIZATION TESTING RANGE

Block Flipping Bi-manual Moving
Robot End Effector [cm] [±15, ±5, ±3] [±15, ±5, 0.0]
Object Translation [cm] [±15, ±5, 0.0] [±10, ±15, 0.0]
Object Orientation [◦] [0.0, 0.0, 0.0] [0.0, 0.0, ±20]

Object Mass [kg] [0.1, 0.8] [0.1, 0.8]
Friction [0.2, 1.0] [0.2, 1.0]

Success Rate [%] 97.6 82.9

TABLE II
SUCCESS RATES FOR SPATIAL AND OBJECT GENERALIZATION

Method
Block Flipping Bi-Manual Moving

Spatial Object Spatial Object

3D FM 0/27 0/12 6/10 3/9
3D FM Comp 0/27 0/12 8/10 7/9
3D FM Force 16/27 4/12 7/10 6/9

3D FM Comp + Force 24/27 10/12 8/10 7/9

Data are collected in IsaacGym using FACTR [9] for
teleoperation; real-world runs use Franka arms. End-effector
force is inferred from Franka joint torques, and percep-
tion uses an Intel RealSense L515 LiDAR. To reduce the
Sim2Real gap for the point cloud data, we inject noise into
simulated point clouds, such as vertical “flying pixels” and
occlusion shadows by detecting depth jumps and interpolat-
ing across them. We also normalize simulated force, which
the real forces are also normalized during real deployment.

A. Generating Force-Informed and Point Cloud Data

To evaluate our simulation-based data generation method,
we conduct experiments on Block Flipping and Bi-manual
Moving with domain randomization over object pose, mass,
friction, and end-effector pose (Table I). We intentionally
omit object shape variations to test whether simple simu-
lation geometry, combined with our proposed components,
suffices for robust real-world deployment.

For Block Flipping, 303 trajectories are generated for
policy learning. During the data generation, the robot follows
the reference trajectory as shown in (Fig. 2) , switches to
object-centric replay upon contact, and tracks force-informed
virtual targets with a forward speed to maintain contact
and complete the flipping stroke. This achieves a success
rate of 97.6%. For Bi-manual Moving, 210 trajectories
are generated. Both arms follow the same pipeline, using
object-centric replay and force-informed targets to maintain
coordinated grasps. Quaternion interpolation with SLERP
ensures smooth reorientation even under box translation
and rotation, yielding robust SE(3)-adaptive behavior with
82.9% success. In both tasks, removing Laplacian editing or
force-informed targets reduces the success rate to 0%.

B. Deploying the Compliant Policy in the Real World

Given the generated simulation data, the policy is trained
with 3000 epochs. The inference machine uses an RTX
3090 Ti GPU. We evaluated the trained policy in real-world
settings to demonstrate spatial and object generalization.
We compare to ablation baselines to show that our design
is superior for such tasks. While works like [4] and [5]
have demonstrated the importance of force-informed virtual
target, their tasks are with RGB data, naturally lacking 3D
understanding. Since our work utilizes point clouds, we ask:
would force-informed data still be necessary, given that we
have access to the geometric features? How important is
force input in these tasks? To answer these questions we
provide three baselines: (1) 3D FM: A point cloud-only flow
matching adapted directly from [15], (2) 3D FM Comp: A
point cloud-only flow matching with compliant output, (3)

P1

P5 P6

P7 P8 P9

P4

P3P2

P5

P4P3

P1

P2

Fig. 4. The red cubes show the location for spatial performance evaluation
on (left) Block Flipping and (right) Bi-manual Moving.

3D FM Force: Using point cloud and force as input without
compliant output, and (4) 3D FM Comp + Force (Ours):
Our full approach. Success rates reported in Table II.

1) Block Flipping: We evaluate real-world spatial gen-
eralization at nine testing positions (Fig. 4), as illustrated
in Fig. 4. Each numbered position represents a testing site
where the center of the test object (Object O1, shown in
Fig. 5(a)) is placed. At each location, we run three trials
per method (totaling 27 trials). 3D FM and 3D FM Comp
had a 0% success rate, primarily failing due to difficulties
in establishing initial contact or getting stuck due to exces-
sive force. 3D FM Force succeeded consistently in central
positions (P4, P5, P6). However, its performance notably
degrades on the sides, getting stuck during flipping due to
rigid interactions. Our method achieved consistent success
at all locations except P7, likely due to limited training
coverage or kinematic constraints. This evaluation shows that
our method can generalize spatially in the real world by using
one demonstration in the simulation.

One might question that using a simple box geometry in
generating point cloud data won’t generalize across objects
in the real world. We use only one size box geometry to
generate data and train the policy. We then test it in the
real world across objects as shown in Fig. 5(a). We tested
all objects at P5 with two different seeds. The last column
of Table II shows the success rate. Again, 3D FM and 3D
FM Comp fail for all trials. The failure modes are similar
to the spatial evaluation. 3D FM Force succeeds at O1
and O6 twice, but fails at others, either not making contact
(O3, O5) or getting stuck (O2, O4). Our method fails at O5
once, which cannot make contact, and O3 once, which slips
back. This shows that even training with simple geometry,
point cloud and force could be combined with the adaptive
compliant output to allow for better execution.

Fig. IV-B.2 shows the force and compliance profiles
comparing simulation data and real-world rollout on one
example run. The real-world force profiles are scaled to
match simulation magnitude for visualization purposes. The
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Fig. 5. Real-world object and spatial generalization results.

plots show that the learned policy deployed in the real
world can match the desired behavior in simulation. The fy
increases upon making the first contact and then decreases,
while fz starts to increase. The bottom plot shows the change
of the impedance parameter d over time. Upon making the
first contact, d decreases to become more compliant and then
slowly increases afterwards, matching our design.

2) Bi-manual Moving: We first evaluate real-world spatial
generalization at five distinct locations, as shown in Fig. 4,
using the O3 object in Fig. 5(b), with each location having
two runs. At each run, the object orientation is perturbed
slightly to provide more variations. The success rate is shown
in Table II. The baseline 3D FM performs well in the spatial
task, with failures happening at P1 and P2. At P1, the object
is too close, and both arms tend to move towards the center
and quickly forward without the idea of touching the object.
Also, 3D FM does not perform well on objects O1 and O2,
whose sizes are smaller than the training point cloud. On the
other hand, 3D FM Comp performs well. The outputting
virtual target provides a closer grasping distance between
the two arms, creating a bigger chance of locking the object.
The failures are commonly on the two sides (P2 and P4) with
object O3, where the robot cannot avoid the edge of the box
when coming down from above to grasp the side. They tend
to get stuck on top of the box. Our method and 3D FM
Force also have the same failure source. The learned policy
exhibits recovering behavior from failures. Even when the
object drops before the goal platform, the policy recovers by
grasping the object again and moving forward until it is on
the platform. Such an emergent recovering behavior makes
the policy robust in the real world. The goal platform is at a
location where the robots can easily get close to singularity
in order to place the object on it, so such a readjustment
after failure improves the success rate a lot. For different
objects, we perform tests with three runs for each object at
P5. All methods have a failure with object O1. This object

Fig. 6. Force and impedance profiles from Block Flipping show similar
trends between simulation and real. The solid lines are the scaled and
smoothed real measurements, while the dashed lines are the force from
the simulation demonstration.

TABLE III
COMPLIANT CONTROLLER COMPARISON

Controller Type Success Rate Energy Mean (J)
Classical Impedance 8/12 0.835
Passive Impedance 10/12 0.734

is difficult to recover from and can easily lose control due to
its height. 3D FM Force fails once with O3, which moves
forward without touching the box to obtain the force signal.
Force and impedance profiles for this task are in the video.

C. Passive Impedance for Real World

We evaluate the effectiveness of passive impedance control
in deploying visuomotor policies trained exclusively in sim-
ulation. Due to discrepancies and noise inherent in sim2real
transfer, policies often exhibit inaccuracies when executed in
the real world. We conducted a comparative study between
a classical position-based adaptive impedance controller and
our proposed passive impedance controller. We tested both
controllers using the same trained checkpoint across six
distinct objects in a real-world block-flipping task. Each
object was consistently placed at P5, and each controller was
executed twice per object, resulting in 12 trials.

Our results indicate that passive impedance control
achieves a notably higher success rate compared to the classi-
cal impedance approach. Specifically, the classical controller
encountered two failures with O4 in Fig. 5(a), which is an ob-
ject significantly larger than those encountered during train-
ing. For these OOD cases, the policy’s reference trajectory
penetrated the object’s geometry. The classical controller,
tracking position setpoints, first pushes it hard to attempt
to achieve these unreachable positions, then starts to lower
the stiffness and progresses to the lift-up stage. In contrast,
the passive impedance controller, leveraging velocity-based
control, naturally yielded without enforcing strict positional
constraints, successfully adapting and completing the task.
Additionally, we measured the total energy injected into the
environment during successful trials in the period of making
contact. We show that passive impedance control injects less
energy on average over different objects, highlighting its
compliance during real-world execution.



V. DISCUSSION & CONCLUSION

We have presented a full framework for (1) generating
force and demonstration-informed simulation data, (2) learn-
ing 3D adaptive compliant flow matching policies, and (3)
rolling out compliant policies with a passive impedance
controller using a state vector field. Our experiments show
that the policy can adjust its compliance in response to
both point cloud and force inputs, enabling more robust
execution in tasks with continuous contact than methods that
rely solely on positional accuracy. Zero-shot deployment on
real Franka robots demonstrates that even without real-world
data, the policy executes reliably in both tasks. We also find
that the passive compliance rollout reduces energy injection
and even improves success. Some limitations remain for
future work. For example, creating a simulation environment
could require some effort for complicated tasks. Also, our
work does not adapt to objects with very different physical
properties. Last but not least, our method considers the
point cloud only, which cannot achieve tasks that require
color information. Overall, our results suggest that a simple
sim-based data generation scheme paired with force-aware,
compliant execution can significantly reduce the dependency
on real-world data while maintaining performance.
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