
Viability-Preserving Passive Torque Control

Zizhe Zhang∗1, Yicong Wang∗1, Zhiquan Zhang2, Tianyu Li1, Nadia Figueroa1

Abstract— Conventional passivity-based torque controllers
for manipulators are typically unconstrained, which can lead
to safety violations under external perturbations. In this paper,
we employ viability theory to pre-compute safe sets in the
state-space of joint positions and velocities. These viable sets,
constructed via data-driven and analytical methods for self-
collision avoidance, external object collision avoidance and
joint-position and joint-velocity limits, provide constraints on
joint accelerations and thus joint torques via the robot dy-
namics. A quadratic programming-based control framework
enforces these constraints on a passive controller tracking a
dynamical system, ensuring the robot states remain within the
safe set in an infinite time horizon. We validate the proposed
approach through simulations and hardware experiments on a
7-DoF Franka Emika manipulator. In comparison to a baseline
constrained passive controller, our method operates at higher
control-loop rates and yields smoother trajectories. Project
Website: vpp-tc.github.io

I. INTRODUCTION

Physical human-robot interaction (pHRI) is ubiquitous in
industrial manufacturing and domestic environments, where
effective operation hinges on close coordination between
humans and robots. To operate safely under physical contact,
robots are required to admit external perturbations while
preserving closed-loop stability. This necessitates the de-
sign of passive torque controllers. Passivity is character-
ized by absorbing at least as much energy as is released.
This property endows robots with robustness and stability
when subjected to external disturbances [1]. The classical
impedance/admittance framework ensures passivity under
appropriate damping [2], [3], and port-Hamiltonian methods
[4] achieve it via energy shaping. The energy-tank framework
monitors next exchanged energy, accumulates dissipation
in a virtual reservoir, and authorized controller adaptations
only with a nonnegative energy budget, making it suitable
for passivity-preserving variable-impedance control [5]. In
scenarios where trajectories are specified via a dynamical-
systems (DS) representation [6], [7], [8] proposed a passive
torque controller for trajectory tracking.

Nevertheless, such passivity-based controllers generally
lack explicit constraint handling, so collision avoidance
and joint-limit satisfaction cannot be guaranteed through-
out the entire mission execution. To address this problem,
[9] (CPIC) leverages the Control Barrier function (CBF)
framework [10] and formulates a hierarchically prioritized
quadratic program (QP) with hard and soft constraints that
constrains a passive torque controller. Within this formu-
lation, joint-limit, self-collision avoidance, external object

∗Equal Contributions.
1University of Pennsylvania, 2UIUC.
Email correspondence: zizhez@seas.upenn.edu

Fig. 1. Schematic of the proposed viability-preserving, passivity-based
torque controller. Joint-limit torque bounds are derived analytically, whereas
bounds for self-collision and external-object collisions are data-driven.

collision avoidance, and singularity avoidance are treated as
safety-critical constraints by defining joint-space analytic or
data-driven barrier functions and encoding them as torque-
level constraints via Exponential Control Barrier Functions
(ECBF) [11]. Nonetheless, although this control framework
explicitly constrained the torques generated by the passive
controller, it has several drawbacks. Although the constraints
are partitioned into soft and hard categories, mutual conflicts
among the hard constraints can still occur, rendering the QP
infeasible. In addition, the QP framework is susceptible to
deadlock and entrapment in local minima in the joint space.
A further computational challenge arises when determining
the parameters of the ECBF: because the safety boundary
is learned from data and defined at the joint level while
the constraints are imposed at the torque level, one must
compute the Hessian of the boundary function with respect
to the joint variables. When this boundary is represented by
neural networks, as in [9], obtaining real-time second-order
information becomes challenging.

Contributions In this work, inspired by [9], [12], [13],
we introduce safety bounds in an augmented state space
comprising joint positions and joint velocities. Operating in
this space allows us to derive bounds on joint accelerations,
and thus on joint torques via the robot dynamics, without
requiring second-order derivatives of the boundary func-
tions. We formalize these bounds using the control-theoretic
notion of viability, which guarantees controlled forward
invariance over an infinite time horizon for some control
input sequences. We construct viable set for self-collision
and external-object collision avoidance through data-driven
methodologies, and we obtain viable sets for joint-position
and joint-velocity limits through analytical derivations (in the
spirit of [13]). Building on these sets, we develop a passivity-

https://vpp-tc.github.io/webpage/
mailto:zizhez@seas.upenn.edu

Fig. 2. Real-world teleoperation task - pressing a desk lamp button to turn it on. The human operator provides only coarse target positions (no precomputed
collision-free trajectory). Our proposed torque controller VPP-TC ensures safety near the lamp and prevents self-collision while accomplishing the task.

preserving torque-control framework (Fig. 1) that maintains
state viability by solving a QP with torque-level constraints
induced by the viable sets; which activate adaptively as the
state approaches the corresponding viability boundaries.

II. PRELIMINARIES
A. Dynamical System Motion Planning

We adopt a Dynamical System (DS) formulation for task-
space planning [6]. Let x ∈ Rd denote the task-space state,
whose nominal evolution is governed by the autonomous
ODE ẋ = f(x), f : Rd → Rd, where f is continuously
differentiable and stable attractor x∗ ∈ Rd, i.e.,

∃δf , s.t. lim
t→∞

∥x(t)− x∗∥ ≤ δf , (1)

where δf is a positive real number. Accordingly, we set the
desired task-space velocity to ẋd = f(x).

B. Passivity-Based Control with Dynamical Systems [8]

To enforce task-space passivity while following a desired
Dynamical System (DS) motion plan, we use a velocity-
based impedance controller:

Fc = Gx(x)−D(x)(ẋ− f(x)), (2)

where Gx(x) = J(q)−⊤G(q) is the gravity term expressed
in task space, D(x) ∈ Rd×d is a state-dependent damping
matrix, ẋ is measured task-space velocity, and f(x) is the
desired DS velocity. Intuitively, the gravity term compensates
potential energy due to gravity, and the damping term applies
anisotropic dissipation to the velocity error. With a suitable
D(x), the controller injects power only along the desired
motion f(x) and dissipates power in directions orthogonal
to it, which yields passive behavior while tracking the DS.

Assumption 1: The vector field f(x) is the gradient flow
of a scalar potential P(x), that is, f(x) = −∇xP(x).
The damping matrix is positive semidefinite and factorizes
as D(x) = V (x)ΛV (x)⊤, with Λ a diagonal matrix of non-
negative entries. The columns of V (x) form an orthonormal
frame chosen so that v1 = f(x)/∥f(x)∥ aligns with the
desired direction of motion, while the remaining columns
span its orthogonal complement.

Under these conditions, the negative velocity-error feed-
back steers ẋ towards f(x), producing kinetic energy only
along the DS direction and dissipating it elsewhere, thereby
achieving task-space passivity during tracking.

C. Safety Guaranteed by Viability

We define the set of viable states for an n-DoF manipulator
as the Cartesian product of a set of q ∈ Rn (joint positions)
and q̇ ∈ Rn (joint velocities), (q, q̇) ∈ V . A state (q, q̇) ∈
R2n is viable if from any initial state within V , there exists
a control sequence q̈ (acceleration) that generates an infinite
state sequence which is inside the viable set, whereas a
merely feasible state may leave the feasible set under future
control sequences (Fig. 3) [12], [13]. We formally define the
viable states and viable set as:

Definition 1 (Viability):

(q(0), q̇(0)) ∈ V ⇔ ∃(q̈i)∞i=0 : (q(t), q̇(t)) ∈ F , ∀t ≥ 0;

|q̈k| ≤ q̈max
k , k = 1, 2, . . . , n,

(3)
where q̈max

k represents hardware joint acceleration limits of
the k-th joint. F ∈ R2n denotes the feasible set of state pairs
(q, q̇) that satisfy all constraints.
We define the safe set as the viable state set V .

Fig. 3. Viability concept: s1 is feasible and viable, whereas s2 is feasible
but non-viable.

Assumption 2: The initial state (q0, q̇0) is assumed to be
within the viable state set V .

III. PROBLEM FORMULATION

We seek to control an n-DoF manipulator with rigid-body
dynamics derived by the Euler-Lagrange equation:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τc + τext, (4)

where q̈ ∈ Rn denote joint accelerations. M(q) ∈ Rn×n,
C(q, q̇) ∈ Rn×n, G(q) ∈ Rn denote the inertia matrix,
Coriolis matrix, and gravity respectively. τc ∈ Rn and
τext ∈ Rn denote the control input and external torque
applied to the joints.

Fig. 4. Planar 3-DoF demo. Left: workspace trajectory. Right: viable box
of (q̈0, q̈1) under hardware limits [−10, 10] rad/s2. With ECA enabled,
the admissible box contracts as the obstacle constraint activates, illustrating
viability-induced acceleration bounds.

The goal of this paper is to provide torque bounds on
nominal passive torque controllers [8]. The torque bounds
are intended to guarantee viability [12], [13] for joint space
constraints, whose feasible sets are formulated as

• Joint Position and Velocity Limits:

Fjnt :=
{
(q, q̇) | q− ≤ q ≤ q+, |q̇| ≤ q̇max

}
.

where q−, q+ ∈ Rn denote the per-joint lower/upper
position bounds, q̇max ∈ Rn

+ denotes the per-joint
maximum velocity, and the inequalities are interpreted
elementwise.

• Self-Collision Avoidance:

Fsca := {(q, q̇) | q ∈ Csca},

where Csca ⊂ Rn is the set of self-collision-free config-
urations.

• External Obstacle Collision Avoidance:

Feca := {(q, q̇) | q ∈ Ceca},

where Ceca ⊂ Rn is the set of external-collision-free
configurations.

According to (3), we can then obtain the separated viable
state set Vjnt, Vsca and Veca. The final viable state set is given
by the intersection V = Vjnt ∩ Vsca ∩ Veca which is defined
as the safe state set.

Problem 1: Consider a torque controlled manipulator
with dynamics (4). Design a passive torque controller that
guarantees safety by preserving the state (q, q̇) within the
viable state set V .

IV. PROPOSED APPROACH
Our proposed approach handles the three aforementioned

forms of collision avoidance in a unified manner by testing
whether the current state belongs to the viable set. Whenever
the state is outside the viable set, we formulate and solve
an optimization problem to return it to the viable set. We
refer to this method as the Viability-Preserving Passive
Torque Controller (VPP-TC), which we will use for brevity
throughout the remainder of the paper. A planar 3-DoF
example illustrating viability-induced acceleration bounds is
shown in Fig. 4. The viable box for (q̈0, q̈1) shrinks from
the hardware limits [−10, 10] rad/s2 as the ECA constraint
activates.

A. Self-Collision Avoidance Constraints

We conservatively define a joint state as self-collision-
free viable if, under maximum deceleration opposite to the
current joint velocity, the robot can come to a complete stop
without any self-collision throughout the braking trajectory.

Definition 2 (Self-collision-free viability): Let Csca ⊂ Rn

be the set of self-collision-free configurations. Given an
initial state (q0, q̇0) ∈ R2n, define the braking control ubr(t)
that applies maximum deceleration opposite to the current
velocity, element-wise, until stop, and let (q(t), q̇(t)) be the
corresponding trajectory. The braking time Tbr(q0, q̇0) is the
first time such that ∥q̇(Tbr)∥ = 0, and the braking trajectory
set is

Cbr(q0, q̇0) := { (q(t), q̇(t)) ,∀t ∈ [0, Tbr] }. (5)

We then define the conservative self-collision viable set as

Vsca :=
{
(q0, q̇0)

∣∣ q(t) ∈ Csca, ∀ t ∈ [0, Tbr]
}
.

Learning Vsca: To learn such conservative viability from
data, we employ a transformer-based neural network to
map states (q, q̇) to a real value Γ(q, q̇) : R2n → R.
The network first applies a linear projection and learned
positional encodings to the input (q, q̇), followed by a multi-
layer transformer encoder that processes the sequence of state
embeddings. The output is aggregated via global average
pooling and passed through an MLP classifier with GeLU
activation to produce the logits (ℓ1, ℓ2), from which Γ(q, q̇)
is defined as Γ(q, q̇) = ℓ1 − ℓ2.

This mapping is used to to define an empirical surrogate
of the viable state set

V̂sca := {(q, q̇) | Γ(q, q̇) > 0}.

For scenarios where Γ(q, q̇) ∈ (0, ϵsca], with ϵsca ∈ R++

denoting a small positive scalar, we impose a constraint
enforcing ∆Γ(q, q̇) ≥ 0, thereby ensuring that the state
remains within the viable state set. By Taylor expansion and
omitting high-order terms, we have

∆Γ(q, q̇) =∇qΓ
⊤ ·∆q +∇q̇Γ

⊤ ·∆q̇

=∇qΓ
⊤ · (q̇δt+ 1

2
q̈δt2) +∇q̇Γ

⊤ · (q̈δt)

=(
1

2
∇qΓ

⊤ · δt2 +∇q̇Γ
⊤ · δt)q̈ +∇qΓ

⊤ · q̇δt,
(6)

which is an affine function of q̈. For simplicity, we define
gse =

1
2∇qΓ

⊤ ·δt2+∇q̇Γ
⊤ ·δt and bs = ∇qΓ

⊤ ·(q̇δt). Then
we have the constraint of q̈ as gseq̈ + bs ≥ 0. Plugging this
acceleration constraint into the robot dynamics (4), we have
the torque constraint as:

gseM
−1τ ≥ gseM

−1(Cq̇ +G)− bs (7)

B. External Obstacle Collision Avoidance Constraints

We employ the Bernstein Polynomial representation [14]
to encode the SDF of every robot link. Let Ωn denote the
n-th link of a robot, for a query point p ∈ R3 expressed
in the base frame, the distance from p to the entire robot

surface at configuration q is the pointwise minimum over all
links:

S(p, q) = min
n=1,...,N

Sb
Ωn

(p, q). (8)

Then we define the viability-preserving SDF as the min-
imum instantaneous SDF encountered along the braking
trajectory Cbr(q0, q̇0) defined in subsection IV-A:

Sv(p, q0, q̇0) = min
t∈[0,Tbr]

S
(
p, q(t)

)
. (9)

Following [14], we replace the nondifferentiable min in
Eqs. 8-9 with a differentiable smooth approximation; in our
implementation we use a soft-min (log-sum-exp) surrogate
to ensure differentiability and avoid gradient discontinuities.

Definition 3 (External-collision-free viability): Similar to
subsection IV-A, we define the conservative external-
collision viable set as

Veca :=
{
(q0, q̇0)

∣∣ q(t) ∈ Ceca, ∀ t ∈ [0, Tbr]
}
.

Also, we use the viability-preserving SDF Sv(p, q, q̇) to
define an empirical surrogate of the viable state set

V̂eca := {(q, q̇) | Sv(p, q, q̇) > 0},

For scenarios where Sv(p, q, q̇) ∈ (0, ϵeca], with ϵeca ∈
R++ denoting a small positive scalar, we impose a constraint
enforcing ∆Sv(p, q, q̇) ≥ 0, thereby ensuring that the state
remains within the viable state set. By taking the Taylor
expansion of Sv(p, q, q̇) and omitting high-order terms, we
have
∆Sv(p, q, q̇) =∇qS

⊤
v ·∆q +∇q̇S

⊤
v ·∆q̇ +∇pS

⊤
v ·∆p

=∇qS
⊤
v · (q̇δt+ 1

2
q̈δt2) +∇q̇S

⊤
v · (q̈δt)

+∇pS
⊤
v ·∆p

=(
1

2
∇qS

⊤
v · δt2 +∇q̇S

⊤
v · δt)q̈

+∇qS
⊤
v · (q̇δt) +∇pS

⊤
v ·∆p.

(10)
For simplicity, we define gee = 1

2∇qf
⊤ · δt2 + ∇q̇f

⊤ · δt
and be = ∇qf

⊤ · (q̇δt) +∇pf
⊤ ·∆p. The constraint is then

expressed as g⊤eeq̈+be ≥ 0, which is also affine to q̈. Plugging
this acceleration constraint into dynamics (4), we have the
torque constraint as

geeM
−1τ ≥ geeM

−1(Cq̇ +G)− be (11)

C. Joint Position and Velocity Limit Constraints

In this subsection, inspired by [13], we describe the
formulation of joint position and velocity limits constraints
using the definition of viability. We aim to find the bounds
of torques to preserve the state (q, q̇) within Vjnt. The joint
acceleration bound is obtained by Algorithm 1 [13] for
position inequalities,

1

δt
(−q̇max − q̇) ≤ q̈ ≤ 1

δt
(q̇max − q̇) (12)

for velocity inequalities, and the intersection of

q̇ + δtq̈ ≤
√
2q̈max(q+ − q − δtq̇ − 0.5δt2q̈)

q̇ + δtq̈ ≥ −
√

2q̈max(q + q̇δt+ 0.5q̈δt2)− q−
(13)

Fig. 5. Braking rollout from (q0, q̇0) to rest (qe,0): label Safe iff every
state along the trajectory to (qe,0) is self-collision-free; otherwise Self-
Collide at the first contact (qt, q̇t). The resulting dataset trains a network
that maps (q, q̇) to a viability score Γ.

for viability inequalities. By taking the intersection of these
three sets of inequalities with the hardware acceleration
limits q̈max, we obtain a maximal lower bound q̈lb and a
minimal upper bound q̈lb such that

q̈lb ≤ q̈ ≤ q̈ub (14)

For further details, please refer to [13].
We can then obtain the torque constraints by plugging (14)

into the dynamics, which yields

q̈lb+M−1(Cq̇+G) ≤ M−1τ ≤ q̈ub+M−1(Cq̇+G) (15)

D. Passive Torque Control with All Constraints

In our control framework, the joint position and velocity
limit constraints are always active, the self-collision avoid-
ance constraints and external obstacle collision avoidance
constraints are active when the state is close to the boundary
of the viable set. The optimization problem is formulated as:

min
τ

1

2
∥Ĵ(q)−⊤τ − Fc(x)∥22 + α1∥τ∥22 + α2∥δ∥22

s.t. q̈lb +M−1(Cq̇ +G) ≤ M−1τ ≤ q̈ub +M−1(Cq̇ +G)

gseM
−1τ ≥ gseM

−1(Cq̇ +G)− bs ∧ (Γ ∈ (0, ϵsca])

geeM
−1τ ≥ geeM

−1(Cq̇ +G)− be − δ ∧ (Sv ∈ (0, ϵeca])

τ ∈ [τmin, τmax]

δ ≥ 0
(16)

We define Ĵ(q)⊤ as ((J(q)J(q)⊤)−1 + σ2In)J(q) to avoid
singular configurations, σ denotes a small real number and In
denotes an identity matrix. δ is a non-negative slack variable.
Passivity analysis see in Appendix A.

(a) With the SCA, the learned score Γ(q, q̇) and the
min link–link distance remain above the threshold;
without SCA the robot enters self-collision.

(b) With the ECA, the viability-preserving distance
Sv(p, q, q̇) and the clearance to the obstacle stay
positive; without ECA they collide.

(c) With both SCA and ECA active, the controller
maintains positive distances to self-collision and
external obstacles throughout the trajectory.

Fig. 6. Simulation results of VPP-TC under different safety constraints.

V. EXPERIMENTAL RESULTS

All experiments were conducted using a 7-DoF Franka
Panda manipulator. For simulations, we employed PyBullet
and solved the QP optimization problem using CVXPY [15],
while CVXGEN [16] was utilized for real-robot experi-
ments. Videos of both PyBullet simulations and hardware
experiments are included in the supplementary material and
available on our project website.

A. Network Training

We train two learning models used by the controller: (i) a
transformer-based classifier Γ(q, q̇) that predicts conservative
self-collision viability, described in Sec. IV-A, and (ii) per-
link SDFs represented with Bernstein polynomials [14] that
enable fast and differentiable distance queries for external-
collision reasoning, used in the computation of the viability-
preserving distance Sv in (9).

1) Self-collision network: We generate 3 million labeled
pairs (q, q̇) in simulation by rolling out the braking control
until the system comes to a full stop. A sample is marked
viable if the entire rollout is self-collision-free and non-
viable otherwise. This dataset is used to train the transformer-
based classifier with a standard Transformer-Encoder back-
bone [17]: with feed-forward size 128, 2 attention heads per
layer, and 4 stacked transformer encoder layers, trained for
30 epochs. On the validation set, we select γthr via a threshold
sweep over Γ, choosing the value that leads to better recall
for the viable class. On the test set at this fixed threshold,
the classifier attains 99.27% accuracy and 99.74% recall.

2) External-collision network: For each robot link Ωn, we
represent the geometry by an offline Bernstein-polynomial
SDF Sb

Ωn
learned from its mesh model [14]. We define a

cubic volume around the link; points inside the volume are
normalized into [0, 1], while points outside are projected
onto the boundary. The SDF of a link is parameterized
by a trivariate Bernstein basis with 24 basis functions per
axis (total 243), and the coefficient vector is optimized by
recursive least squares with ridge regularization, updating the

weights incrementally on mini-batches. During inference, all
link-level SDFs are transformed to the base frame using the
kinematic chain, and the whole-body SDF S(p, q) is com-
puted as in Eq. (8). We evaluate external-collision distances
along the entire braking trajectory. At each discretized step
t ∈ [0, Tbr], we query the whole-body SDF S(p, q(t)) to
measure clearance and take the min across all time steps. The
resulting viability-preserving distance is defined as Eq. (9).

B. Simulation Experiments
We designed three simulation experiments on the 7-DoF

Franka Panda in PyBullet to evaluate the effectiveness of the
proposed viability-preserving passive torque controller under
different safety constraints: 1) joint limits with self-collision
avoidance, 2) joint limits with external collision avoidance,
and 3) joint limits with both self-collision and external
collision avoidance. The robot is initialized at joint position
[0.669, −0.346, −0.742, −1.66, −0.367, 2.3, 1.99]⊤ with
all joint velocities set to zero. Additionally, we compared our
method against the baseline Constrained Passive Interaction
Control (CPIC) [9], highlighting improvements in compu-
tational efficiency, path length, and trajectory smoothness.
All simulation experiments were performed on a workstation
running Ubuntu 20.04, equipped with an AMD Ryzen 7
9800X3D CPU and an NVIDIA GeForce RTX 4060 GPU.

1) Joint Position and Velocity Limits & Self-Collision
Avoidance: In this scenario, the desired task-space DS f(x)
has a convergence point located within the manipulator’s
own body. Without enforcing the self-collision constraint,
the robot would inevitably collide with itself.
Thus, we simply define the potential function as

V (x) = (x− x∗)⊤P (x− x∗), (17)

where x∗ = [0, 0, 0.3]⊤ and P = −25 In. The associated
vector field is then given by

ẋ = f(x) = ∇xV (x) = 2P (x− x∗). (18)

In this test, we set a threshold γthr = 2.5, which the
manipulator is required to remain above. This threshold was

https://vpp-tc.github.io/webpage/

TABLE I
COMPARISON OF CPIC AND VPP-TC ACROSS DIFFERENT CONSTRAINT SETTINGS (AVERAGE OVER 5 TRIALS).

Control Loop Rate [Hz] ↑ Trajectory Length [m] ↓ Trajectory Jerkness ↓
SCA ECA ALL SCA ECA ALL SCA ECA ALL

CPIC 126.1±1.4 72.6±0.3 65.8±0.2 1.12±0.29 1.54±0.23 1.59±0.23 8.8±2.3 1913.7±726.0 2173.9±788.0

VPP-TC 171.6±9.1 153.0±4.9 155.4±10.3 0.75±0.18 1.23±0.19 1.19±0.21 1.2±0.4 216.2±262.8 186.7±116.8

selected based on the recall performance of the transformer-
based neural network classifier, ensuring a high likelihood
of correctly identifying viable states. Fig. 6(a) shows that,
without the SCA constraint, the manipulator enters self-
collision configurations where link1 and link6 intersect. With
the self-collision constraint enforced, all non-adjacent links
maintain a minimum self-collision distance, implicitly guar-
anteed through Γ(q, q̇). The simulation runs for 6 seconds.

2) Joint Position and Velocity Limits & External Obstacle
Collision Avoidance: We designed a simple scenario in which
the robot is tasked with reaching the convergence point
x∗ = [0, −0.6, 0.3]⊤ while avoiding both a static and a
dynamic obstacle along its path. The static obstacle is located
at [0.4, −0.3, 0.4]⊤, whereas the dynamic obstacle follows
a trajectory [0, −0.4, 0.5 + 0.1 sin(2trun))]

⊤ as a function
of runtime trun. Both obstacles are modeled as spheres with
a radius of 5 cm. The simulation runs for 4 seconds, during
which the manipulator is required to maintain a clearance
of at least 5 cm from the obstacle surfaces. As shown in
Fig. 6(b), the incorporation of the external collision avoid-
ance constraints ensures that collisions with the obstacles are
prevented. The simulation runs for 4 seconds.

3) ALL Constraints: We designed a scenario where the
robot would collide with a static spherical obstacle of
radius 5 cm, located at [0, 0.3, 0.2]⊤, on its way to the
target position [−0.1, 0, 0.3]⊤. In addition, self-collision
configurations arise if the SCA constraint is not enforced,
as shown in the top two subfigures of Fig. 6(c). By simul-
taneously applying joint-limit, self-collision, and external-
collision constraints, our controller ensures safe and feasible
motion throughout the trajectory, as illustrated in the bottom
subfigure of Fig. 6(c). The simulation runs for 6 seconds.

4) Comparison with CPIC: We compare our method
against the baseline CPIC controller with three sets of
experiments. First, we conducted five experiments under the
SCA setting, where the robot’s initial joint configuration was
randomly sampled and the target was fixed at [0, 0, 0.3]⊤.
Similarly, five experiments were conducted under the ECA
setting with one static obstacle; both the obstacle position and
the robot’s initial configuration were randomly sampled. It
is worth noting that our VPP-TC enforces external-collision
avoidance by considering the full geometry of all robot links,
whereas in the version of CPIC available to us, only the last
three links were taken into account. Finally, five experiments
were performed under the ALL-constraints setting, with
the robot initialized at [0, 0, 0, −1.5708, 0, 1.8675, 0]⊤, a
static obstacle located randomly, and the target was fixed
at [−0.25, −0.35, 0.5]⊤. Each ALL trial was run for t
seconds. For all experiments, we use three quantitative

metrics to evaluate performance. (i) Control Loop Rate: is
defined as the average number of control steps executed per
second, with higher values indicating better performance. In
simulation, it is computed as the total number of simulated
control steps divided by the actual wall-clock runtime on
the computer. (ii) Path Length: is the total distance traveled
by the end-effector in simulation to accomplish the task. A
shorter path length indicates a more efficient trajectory. (iii)
Trajectory Jerkness: reflects the smoothness of the executed
trajectory. Let x(t) ∈ R3 be the end-effector trajectory
over t ∈ [0, T], with jerk j(t) =

...
x (t) and path length

L =
∫ T

0
∥ẋ(t)∥ dt. The normalized jerk is then defined as

NJ =
1

L2T 5

∫ T

0

∥ ...
x (t)∥2 dt, (19)

where smaller values indicate smoother trajectories. As sum-
marized in Table I, VPP-TC consistently achieves the lowest
computation time, shortest path length to the task position,
and significantly reduced trajectory jerkness vs. CPIC.

C. Real-Robot Experiments

In addition to simulation, we conducted three experimental
scenarios on the 7-DoF Franka Panda to examine the con-
troller’s effectiveness under real-world conditions: 1) joint
limits with self-collision avoidance, 2) joint limits with ex-
ternal collision avoidance, and 3) joint limits with both self-
collision and external collision avoidance. Experiment 1) was
performed on an Intel NUC 13 Pro running Ubuntu 20.04.
Experiments 2) and 3) were conducted using both an Intel
NUC 13 Pro and a workstation running Ubuntu 22.04,
equipped with an Intel i7-11700K CPU and an NVIDIA
RTX 3070 GPU. All real-robot experiments employed ROS
Noetic for communication, where the workstation setup used
RoboStack [18] to build the Noetic environment.

1) Joint Position and Velocity Limits & Self-Collision
Avoidance: We performed three experiments in this setting.
In the first two, the robot started from the joint configura-
tion [0.483, 0.200, 0.712, −2.240, −0.190, 2.384, 1.325]⊤

at rest and was commanded to reach the target position
[0, −0.3, 0.4]⊤. Without the self-collision avoidance (SCA)
constraint, the arm quickly entered Reflex Mode due to a
self-collision warning and halted (Fig. 7(a)). With the SCA
constraint enabled, the robot safely avoided self-collision
and reached the target (Fig. 7(b)). In the third experi-
ment, we attached a UMI gripper as the end-effector and
retrained the neural network Γumi(q, q̇) to incorporate the
new geometry, showing that the learned viability boundary
generalizes across different robot geometries and continues
to prevent unsafe states (Fig. 7(c)). Moreover, the fact that
the arm cannot be pushed beyond the boundary highlights

(a) Without SCA, the arm quickly triggers Reflex
Mode due to self-collision and halts.

(b) With SCA enabled, the arm safely avoids self
collision and reaches the target.

(c) With a UMI gripper, the arm cannot be pushed
beyond the viability boundary.

(d) Static obstacle with external push: the arm
avoids obstacle and stops with a positive clearance.

(e) Moving obstacle approaching: the arm yields
and maintains a safe clearance from obstacle.

(f) Teleoperating near a lamp: positive clearance
from obstacle preserved.

Fig. 7. Real-robot demonstrations of the proposed controller. Top row: self-collision avoidance (SCA). Bottom row: external-collision avoidance (ECA).
Trajectory overlays show that activating the corresponding constraint prevents contact and maintains positive clearance while allowing the task to proceed.

that the controller enforces a normal constraint reaction and
clamps the normal velocity to zero, while tangential damping
dissipates motion. In this way, external input energy is either
dissipated through damping or absorbed by the constraint
reaction, and no net energy is injected into the environment,
reflecting the task-space passivity of the controller.

2) Joint Position and Velocity Limits & External Obstacle
Avoidance: The positions of external obstacles were provided
by an OptiTrack motion capture system. We first tested
the case of a static spherical obstacle placed next to the
robot. When external forces were applied to push the arm
toward the obstacle from different joint configurations, the
arm resisted the motion and stopped while maintaining a
safe clearance before contact (Fig. 7(d)). Similar to the self-
collision scenario, as the arm approached the obstacle, it was
unable to be pushed any further, indicating that the controller
generated a reaction force along the obstacle normal while
suppressing motion in that direction. At the same time,
damping in the tangential directions dissipated the residual
motion. Consequently, the external work was either absorbed
by the constraint reaction or dissipated, and the system
remained passive in task space without injecting net energy

into the environment. In a second experiment, we tested a
moving spherical obstacle approaching the arm. The robot
responded by actively moving away and maintained a safe
clearance without collision (Fig. 7(e)). More dynamic and
extreme scenarios with either multiple or high-speed moving
obstacles are demonstrated in the accompanying video and
on our project website. Unlike the previous CPIC approach,
which struggles with multiple or dynamic obstacles due to
computational bottlenecks, our VPP-TC handles such cases
effectively. The high update rate (∼200 Hz with two dynamic
obstacles) enables true whole-body control with multiple
obstacles, whereas CPIC in practice only considered the
distance between the obstacle and the 7th link. Moreover,
since the external-collision avoidance constraint (10) implic-
itly incorporates obstacle velocity through the ∆p term, VPP-
TC can also robustly handle fast-moving obstacles.

3) ALL Constraints: In this experiment, the robot was
teleoperated by specifying only coarse target positions rather
than precise collision-free trajectories, and tasked with press-
ing the switch of a desk lamp to turn it on (Fig. 7(f)). Along
the way to the switch, the planned path intersected with
the lamp body (external obstacle) and also brought the arm

https://vpp-tc.github.io/webpage/

close to the base link, creating a risk of self-collision. With
VPP-TC, however, the robot avoided both external and self-
collisions without any explicit motion planning, and safely
reached the switch to accomplish the task (Fig. 2). This result
highlights several key advantages of VPP-TC:

• It provides unified handling of joint limits, self-
collision, and external collision constraints within the
same framework.

• It enables safe execution of high-level teleopera-
tion commands without requiring handcrafted obstacle-
avoiding trajectories.

• It ensures robust task-space passivity, so that safety is
guaranteed under coarse or uncertain human inputs.

These features underline the potential of VPP-TC as a
versatile controller for safe human-in-the-loop manipulation.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed a novel viability-based control frame-
work that enforces safety constraints for passive torque-
controlled robots. We construct viable sets in the state space
via a combination of data-driven learning and analytical
derivation. A quadratic program then enforces the resulting
torque bounds. We demonstrate the effectiveness and perfor-
mance advantages of the proposed approach over a baseline
through both simulation and hardware experiments. Our
current control framework presumes an accurate dynamics
model. In future work, we aim to accommodate bounded
mismatches between the true and estimated dynamics and
design a robust controller that guarantees viability in the
presence of modeling errors.

REFERENCES

[1] A. van der Schaft, Passive State Space Systems. Cham: Springer
International Publishing, 2017, pp. 59–99.

[2] J. Colgate, “Robust control of dynamically interacting systems,” In-
ternational Journal of Control, vol. 48, no. 1, pp. 65–88, Jul. 1988.

[3] N. Hogan, “Impedance control: An approach to manipulation,” in 1984
American Control Conference, 1984, pp. 304–313.

[4] A. S. Huaman, O. B. Cieza, and J. Reger, “Passivity-based control
for the cart-pole in implicit port-hamiltonian representation: An ex-
perimental validation,” in 2021 European Control Conference (ECC),
2021, pp. 2080–2085.

[5] A. Dietrich, X. Wu, K. Bussmann, C. Ott, A. Albu-Schäffer, and
S. Stramigioli, “Passive hierarchical impedance control via energy
tanks,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 522–
529, 2017.

[6] A. Billard, S. S. Mirrazavi Salehian, and N. Figueroa, Learning
for Adaptive and Reactive Robot Control: A Dynamical Systems
Approach. Cambridge, USA: MIT Press, 2022.

[7] N. Figueroa and A. Billard, “Locally active globally stable dynam-
ical systems: Theory, learning, and experiments,” The International
Journal of Robotics Research, vol. 41, no. 3, pp. 312–347, 2022.

[8] K. Kronander and A. Billard, “Passive interaction control with dynam-
ical systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 106–113, 2015.

[9] Z. Zhang, T. Li, and N. Figueroa, “Constrained passive interaction
control: Leveraging passivity and safety for robot manipulators,” in
2024 IEEE International Conference on Robotics and Automation
(ICRA), 2024, pp. 13 418–13 424.

[10] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), 2019.

[11] Q. Nguyen and K. Sreenath, “Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints,” in 2016
American Control Conference (ACC). IEEE, 2016, pp. 322–328.

[12] M. A. Bouguerra, T. Fraichard, and M. Fezari, “Viability-based
guaranteed safe robot navigation,” Journal of Intelligent & Robotic
Systems, vol. 95, no. 2, pp. 459–471, 2019.

[13] A. D. Prete, “Joint position and velocity bounds in discrete-time
acceleration/torque control of robot manipulators,” IEEE Robotics and
Automation Letters, vol. 3, no. 1, pp. 281–288, 2018.

[14] Y. Li, Y. Zhang, A. Razmjoo, and S. Calinon, “Learning robot ge-
ometry as distance fields: Applications to whole-body manipulation,”
2023.

[15] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[16] J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optimization and Engineering, vol. 12,
no. 1, pp. 1–27, 2012.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
CoRR, vol. abs/1706.03762, 2017.

[18] T. Fischer, W. Vollprecht, S. Traversaro, S. Yen, C. Herrero, and
M. Milford, “A robostack tutorial: Using the robot operating system
alongside the conda and jupyter data science ecosystems,” IEEE
Robotics and Automation Magazine, 2021.

APPENDIX

A. VPP-TC passivity analysis

We analyze the passivity of the controller generated by the
simplest version of (16) with just one constraint active,

min
τc

1

2
∥J(q)−⊤τc − Fc(x)∥22, s.t. a⊤τc ≤ b, (20)

where a ∈ Rn and b ∈ R are the parameters of the active
affine constraint. We have the closed-form solution of the
above QP as:

τ∗c = J(q)⊤Fc −
a⊤J(q)⊤Fc − b

a⊤J(q)⊤J(q)a
J(q)⊤J(q)a. (21)

We analyze the passivity in task-space, the equivalent task
space force is expressed as:

F ∗
c = J(q)−⊤τc

= Fc − J(q)−⊤ a⊤J(q)⊤Fc − b

a⊤J(q)⊤J(q)a
J(q)⊤J(q)a

= Fc −
a⊤J(q)⊤Fc − b

a⊤J(q)⊤J(q)a
J(q)a

= (I − J(q)a(J(q)a)⊤

(J(q)a)⊤J(q)a
)Fc −

bJ(q)a

a⊤J(q)⊤J(q)a

= ĀFc − B̄,

(22)

where Ā = I − J(q)a(J(q)a)⊤

(J(q)a)⊤J(q)a
, B̄ = bJ(q)a

a⊤J(q)⊤J(q)a
. We define

the storage function as S = 1
2 ẋ

⊤Mẋ+λ1P (x), where P (x)
is the potential energy. We can make the following derivation:

Ṡ − ẋ⊤fext =ẋ⊤Mẍ+
1

2
ẋ⊤Ṁẋ+ λ1ẋ

⊤∇xP

=ẋ(−G(x) + F ∗
c) + λ1ẋ

⊤∇xP

=ẋ(Ā− I)G− ẋĀDx− ẋB̄

+ λ1ẋ
⊤(∇xP + Āf(x)).

(23)

We can conclude that for task-space state (x, ẋ) satisfies
ẋ(Ā− I)G− ẋĀDx− ẋB̄+λ1ẋ

⊤(∇xP + Āf(x)) ≤ 0, the
robot is passive. Otherwise, passivity is lost and the robot
becomes stiff and enforce the constraints.

	INTRODUCTION
	PRELIMINARIES
	Dynamical System Motion Planning
	Passivity-Based Control with Dynamical Systems kronander2015passive
	Safety Guaranteed by Viability

	PROBLEM FORMULATION
	PROPOSED APPROACH
	Self-Collision Avoidance Constraints
	External Obstacle Collision Avoidance Constraints
	Joint Position and Velocity Limit Constraints
	Passive Torque Control with All Constraints

	EXPERIMENTAL RESULTS
	Network Training
	Simulation Experiments
	Real-Robot Experiments

	CONCLUSIONS AND FUTURE WORKS
	References
	Appendix
	VPP-TC passivity analysis

